Which of the following results have we already
seen in a previous section, to do with a path c:
[a,b] -> RAn and a vector field F on RAn?

a. If F=gradf then J\ F 015, = f(c(b)) - f(c(a))
c
b. If J F . As= f(c(b)) - f(c(@))
J b
for some function f then F = grad f

c. If F=gradf then f F ‘Olé does not depend
on the particular choice of path from c(a) to c(b)

d. When n=3, if F=gradf then curl F=0

e. J'O‘% does not depend on the particular
choice of path from c(a) to c(b)
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Section 8.3 Conservative vector fields

What we learn:

e a more complete angle on the gradient
vector fields we have already studied

e path-independence

e another way to find a potential function
whose gradient the field is

e a criterion for when a vector field is
conservative

e slightly more elaborate applications,
similar to what we have seen before




Theorem 7.
Let F be a vector field on R~An . The following
are equivalent:

(ii) For any two oriented curves C_1 and C_2
that have the same end points
T-ds =j Fede
C

—

Ci 2
(iii) F is the gradient of some function f

doesn t 2SI stact= Johysh

(i) For any oriented simple closed curve C,
J] Fods =O
c =

(iv) (assuming n=3) curl F=0

Definition: a vector field satisfying (ii) is called
conservative

We have seen before?

e (i) => (il Yes
e (iii) => (i) No
.« (i) => (ii) Yes
. (i) => (i) Yes
e (i) => (iv) No
.« (iv) => (iii) Yes
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Comments on:
(iii) F is the gradient of some function f

<=>
(iv) (@assuming n=3) curl F=0
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2-dimensional version
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Theorem: When n =3, given a vector
field F we can write
F=curlG <=> DivF=0



Questions (like 1 -4, 17, 18):

Determine if the vector field

F(x,y,z) = (-2+4y, -4x, 0)

is a gradient vector field. If it is, find a function
f sothat F = gradf.

Determine whether F = curl G for some
vector field G (but do not find G).
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Comments on:

(ii) For any two oriented curves C_1 and

C_2 that have the same end pointsj{:w{g lLFJES
<=> [ 2

(iii) F is the gradient of some function f
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We have a new way to compute a potential
function f for F when F is conservative,

but in practice it is not an improvement on

the way we have already seen.

Example: Find f sothat F =grad f when
F(x,y,z) = (e/\x sin y, eAx cos Yy, z/\2).
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Example: Find J s Oké
C

when c(t) = (t, eA(sint)), 0<t<m) and
F(x,y,2) = (y, X)
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Comments on

(i) For any two oriented curves C_1 and C_2
that have the same end points
j F-ds »J Feds

<=> € C

(i) For any oriented simple closed curve C,
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