Pre-class Warm-up!!!
Which of the following results have we already seen in a previous section, to do with a path c : $[a, b]->R \wedge n$ and a vector field F on $R \wedge n$?
a. If $F=\operatorname{grad} f$ then $\int_{c} F \cdot d \underline{s}=f(c(b))-f(c(a))$
b. If $\int_{c} F \cdot d s=f(c(b))-f(c(a))$
for some function f then $F=\operatorname{grad} f$
c. If $F=\operatorname{grad} f$ then $\int_{C} F \cdot d \underline{s}$ does not depend on the particular choice of path from $c(a)$ to $c(b)$
d. When $n=3$, if $F=\operatorname{grad} f$ then $\operatorname{curl} F=0$
e. $\int_{C} F \cdot d s$ does not depend on the particular choice of path from $c(a)$ to $c(b)$

Yes No/ Not correct as written.

Yes No Yes No
Yes No Incorrect statement.

Section 8.3 Conservative vector fields

What we learn:

- a more complete angle on the gradient vector fields we have already studied
- path-independence
- another way to find a potential function whose gradient the field is
- a criterion for when a vector field is conservative
- slightly more elaborate applications, similar to what we have seen before

Theorem 7.
Let F be a vector field on $R \wedge n$. The following are equivalent:
(ii) For any two oriented curves C_1 and C_2 that have the same end points

$$
\int_{C_{1}} F \cdot d \underline{s}=\int_{C_{2}} F \cdot d \underline{s}
$$

(iii) F is the gradient of some function f
doesn'tcrostsseff start = finish
(i) For any oriented simple closed curve C,

$$
\int_{C} F \cdot d s=0
$$

(iv) (assuming $n=3$) curl $F=0$

Definition: a vector field satisfying (ii) is called conservative

We have seen before?

- (ii) $=>$ (iii) Yes
- \quad (iii) $=>$ (ii)
- (i) $=>$ (ii) Yes
- (ii) $=>$ (i) Yes
- \quad (iii) $=>$ (iv)
- (iv) $=>$ (iii)

Yes

Comments on:
(iii) F is the gradient of some function f <=>
(iv) (assuming $n=3$) curl $F=0$

We don't really prove (iv) \Rightarrow (iii)

$$
\left.\begin{array}{l}
\text { If } F=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \text { then } \\
\nabla \times F=\left(\frac{\partial}{\partial y} \frac{\partial f}{\partial z}-\frac{\partial \partial f}{\partial z \partial y},\right.
\end{array}\right)
$$

Fact if these partial derivatives exist and are continuous then

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial y \partial z}=\frac{\partial^{2} f}{\partial z \partial y} \\
& \text { Thus } \nabla x F=(0,0,0)
\end{aligned}
$$

2-dimensional version

$$
\begin{aligned}
& \mathcal{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { then } \\
& F=\left(F_{1}, F_{2}\right)=\nabla f \\
& \Leftrightarrow \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=0
\end{aligned}
$$

$$
\text { Recall: } \nabla \cdot(\nabla \times F)=0
$$

Theorem: When $\mathrm{n}=3$, given a vector field F we can write

$$
F=\operatorname{curl} G<\Rightarrow \operatorname{Div} F=0
$$

Questions (like 1-4, 17, 18):
Determine if the vector field

$$
F(x, y, z)=(-2+4 y,-4 x, 0)
$$

is a gradient vector field. If it is, find a function f so that $F=\operatorname{grad} \mathrm{f}$.
Determine whether $F=$ curl G for some vector field G (but do not find G).

Solution

$$
\begin{aligned}
& \text { Suction } \\
& \begin{aligned}
\nabla \times F & =\left(\frac{\partial 0}{\partial y}-\frac{\partial}{\partial z}(-4 x), 0-0,-4-4\right) \\
& \neq 0 \text { so } F \neq \nabla f \text { for some } f \\
\nabla \cdot F & =\frac{\partial}{\partial x}(-2+f y)+\frac{\partial}{\partial y}(-4 x)+\frac{\partial}{\partial z}(0) \\
& =0
\end{aligned} \\
& \begin{aligned}
\\
\nabla
\end{aligned}
\end{aligned}
$$

$80 F=\nabla \times G$ for some G.

Comments on:
(ii) For any two oriented curves C_1 and C_2 that have the same end points $\int_{C_{1}} F \cdot d \underline{d}=\int_{C_{2}} F d s$
(iii) F is the gradient of some function f

We have seen (iii) \Rightarrow (ii) . if $F=\nabla f$ then $\int_{\text {any } C} F=f(c(b))-f\left(c^{(a)}\right)$ is independent of choice f C
(ii) \Rightarrow (iii). Assume (ii). We construct a function f with $F=D f$. Pick a point \underline{u} in \mathbb{R}^{n}. For any vector \underline{v}
define $f(v)=\int_{c} E \cdot d s$ whee c is any path form $u-b v$
We have to show $\nabla f=F$
Carder $F_{3}=\frac{\partial}{\partial z} f$

is an anhidenvative of $F_{3}, \frac{\partial f}{\partial 2}=F_{3}$
Do the some int components F_{1} and F_{2}, and add

We have a new way to compute a potential function f for F when F is conservative, but in practice it is not an improvement on the way we have already seen.

Example: Find f so that $F=$ grad f when $F(x, y, z)=\left(e^{\wedge} x \sin y, e^{\wedge} x \cos y, z \wedge 2\right)$.

Solution: Use method we already
know:
Solve $\frac{\partial f}{\partial x}=e^{x} \sin y \quad \frac{\partial f}{\partial y}=e^{x} \cos y$

$$
\frac{\partial f}{\partial z}=z^{2}
$$

$$
f=e^{x} \sin y+\frac{1}{3} z^{3}
$$

Example: Find $\int_{c} F \cdot d \underline{s}$
when $\left.c(t)=\left(t, e^{\wedge}(\sin t)\right), 0 \leq t \leq \pi\right)$ and $F(x, y, z)=(y, x)$

Solution
$F=\nabla f$ where

$$
\begin{aligned}
& f(x, y)=x y \\
& \int_{C} F \cdot d s=\pi \cdot 1-0 \cdot 1=\pi
\end{aligned}
$$

Comments on
(ii) For any two oriented curves C_1 and C_2

$$
\begin{aligned}
& \text { that have the same end points } \\
& \qquad \int_{C_{1}} F \cdot d \underline{s}=\int_{C_{2}} F \cdot d s
\end{aligned}
$$

$$
\begin{aligned}
\int_{C_{2}} F \cdot d \underline{s} & =0 \quad b / C \quad c_{2}^{\prime}=0 \\
& =\int_{C} F \cdot d \underline{s}
\end{aligned}
$$

(i) For any oriented simple closed curve C,

$$
\int_{C} F \cdot d s=0
$$

Proof of $(11) \Rightarrow(1)$. Suppose (in)
tet C be a curve from \underline{v} to \underline{v}

Take $C_{1}=C$
$C_{2} \leftrightharpoons$ the path that is constant at v.

